A profile-based deterministic sequential Monte Carlo algorithm for motif discovery

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A profile-based deterministic sequential Monte Carlo algorithm for motif discovery

MOTIVATION Conserved motifs often represent biological significance, providing insight on biological aspects such as gene transcription regulation, biomolecular secondary structure, presence of non-coding RNAs and evolution history. With the increasing number of sequenced genomic data, faster and more accurate tools are needed to automate the process of motif discovery. RESULTS We propose a d...

متن کامل

Piecewise-deterministic Markov Processes for Sequential Monte Carlo and MCMC∗

This talk will introduce piecewise-deterministic Markov processes, and show how they can be used to develop novel, continuous-time, variants of MCMC or SMC. A particular motivation for this work is to develop Monte Carlo methods that can sample from a posterior and that scale well to large-data.

متن کامل

A generic motif discovery algorithm for sequential data

MOTIVATION Motif discovery in sequential data is a problem of great interest and with many applications. However, previous methods have been unable to combine exhaustive search with complex motif representations and are each typically only applicable to a certain class of problems. RESULTS Here we present a generic motif discovery algorithm (Gemoda) for sequential data. Gemoda can be applied ...

متن کامل

An Efficient Sequential Monte Carlo Algorithm for Coalescent Clustering

We propose an efficient sequential Monte Carlo inference scheme for the recently proposed coalescent clustering model [1]. Our algorithm has a quadratic runtime while those in [1] is cubic. In experiments, we were surprised to find that in addition to being more efficient, it is also a better sequential Monte Carlo sampler than the best in [1], when measured in terms of variance of estimated li...

متن کامل

Monte Carlo Search Algorithm Discovery for One Player Games

Much current research in AI and games is being devoted to Monte Carlo search (MCS) algorithms. While the quest for a single unified MCS algorithm that would perform well on all problems is of major interest for AI, practitioners often know in advance the problem they want to solve, and spend plenty of time exploiting this knowledge to customize their MCS algorithm in a problem-driven way. We pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bioinformatics

سال: 2007

ISSN: 1367-4803,1460-2059

DOI: 10.1093/bioinformatics/btm543